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Community detection in social networks is one of the most active problems with lots of applications.
Most of the existing works on the problem have focused on detecting the community considering
only the closeness between community members. In the real world, however, it is also important
to consider bad relationships between members. In this paper, we propose a new variant of the
community detection problem, called friendly community search. In the proposed problem, for a
given graph, we aim to not only find a densely connected subgraph that contains a given set of query
nodes but also minimizes the number of nodes involved in bad relationships in the subgraph. We
prove that is Non-deterministic Polynomial-time hard (NP-hard), and develop two novel algorithms,
called Greedy and SteinerSwap that return the near optimal solutions. Experimental results show
that two proposed algorithms outperform the algorithm adapted from an existing algorithm for the

optimal quasi-clique problem.

Keywords: community detection; social network; graph algorithm

Received 15 November 2013; revised 29 June 2014
Handling editor: Jong Hyuk Park

1. INTRODUCTION

With the emergence of various large social network services
such as Facebook,1 Twitter2 and Google+,3 community
detection in social networks is getting a great deal of attention
in a variety of contexts. In many applications based on social
networks, it is required to find a meaningful community
structure that can reveal some interesting characteristics behind
the target social network [1]. Recently, there were also some
attempts to find a community including a given set of query
nodes, which is called the community search problem [2]
distinguished from the classic community detection problem.
This query-dependent variant of the community detection
problem can be used in many applications such as finding
thematic groups and organizing social events. For example,
the host of a social event may want to invite people who are
close to the host and well acquainted with each other. If the

1https://www.facebook.com/.
2https://twitter.com/.
3https://plus.google.com/.

members of the social community are close to each other, the
chance of success of the social event will become higher [2].
This research addresses that the meaningful community should
be a subgraph with a high density and a small diameter.

However, only considering these properties is not always
sufficient to find a meaningful community consisting of
members truly acquainted with each other. In the real world,
people build many relationships with other people for various
reasons such as the same work place, the same school or the
same neighbourhood. In these relationships, there can be some
bad relationships as well as good relationships. For instance,
people may be unwilling to share their private activities with
other members who are connected in the social network, or
they can even dislike their acquaintances due to some personal
reasons. These relationships are regarded as bad relationships.

For the truly friendly community, bad relationships are better
to be avoided. According to a research result in neuroscience
it is known that being together with someone whom people
dislike can adversely affect on the activity of their brain [3].
This implies that people are not likely to enjoy social events
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or achieve the desired teamwork, when they belong to a
community with someone in a bad relationship. If there are
many members who are involved in bad relationships in the
community, the community cannot be very friendly, which
leads to the fail of the original purpose of the community.
In order to improve the chance of achieving the goal of the
community, it is important to minimize the number of members
involved in bad relationships in the community as well as
maximize the closeness of the community.

However, most existing studies have focused on finding a
community considering only the closeness in social networks,
and hence the resulting community is mainly a tightly coupled
subgraph. Unfortunately, the straightforward adaptation of
these works on the community detection problem is not
effective to find a friendly community in which the number
of members involved in bad relationships is minimized. For
instance, the goal of the community search problem is finding a
community including a set of given query nodes while trying to
maximize the density of the community. However, the density
of the community may not capture bad relationships between
members, since the density of the community only represents
how the members of the community are closely connected in
social networks.

Motivated from this limitation, we propose a new problem
that is an important variant of the community detection
problem, called the friendly community search (FCS) problem.
For a given graph and a set of query nodes in the graph, we
aim to find a densely connected subgraph that contains the set
of query nodes while minimizing the number of nodes (i.e.
members) involved in bad relationships in the subgraph. The
FCS problem can also be useful in any applications where the
community search problem is utilized.

The first goal of the FCS problem is to find a densely
connected subgraph that contains query nodes. Therefore, we
need to choose an appropriate density measure. There are three
well-known measures that represent the density of a graph:
the edge density, the average degree and the minimum degree
of the nodes are commonly used. Among these measures, we
use the edge density, which is a ratio of the number of edges
to the number of all possible pairs of nodes. This is due to
our observation that the actual density of a graph is captured
better by the edge density than the other measures, which will
be further explained in Section 3.

Our second goal is to minimize the number of members
involved in bad relationships in the resulting subgraph. We
denote the bad relationships between nodes by hate set H , and
we define the hate function f to measure the bad relationships
in the subgraph based on H . The smaller f value of the
subgraph, the less members involved in bad relationships in
the subgraph.

It is challenging to find the community satisfying both of
these two criteria. We theoretically prove this by showing
that the FCS problem is Non-deterministic Polynomial-time
hard (NP-hard). To solve the FCS problem, we devise two

effective algorithms returning a nearly optimal solution. The
first is a greedy algorithm, called Greedy, where the nodes that
minimize f are iteratively removed from the entire graph. The
second algorithm, called SteinerSwap, is based on the idea
opposite to Greedy. Instead of removing nodes, SteinerSwap
adds nodes to the seed structure which is the Steiner tree built
on a given set of query nodes. By doing this, we can achieve a
result similarly to that of Greedy in much less execution time.

The contributions of this paper are as follows:

(i) To the best of the our knowledge, we are the first
to consider bad relationships between the members
of a community, and thereby proposing a novel
problem of finding the densely connected community
that minimizes the number of members involved in
bad relationships in the community, namely the FCS
problem. Also, we prove that the proposed problem is
NP-hard.

(ii) We propose two effective algorithms, namely Greedy
and SteinerSwap. The Greedy algorithm iteratively
removes nodes from the entire graph while the
SteinerSwap algorithm adds nodes to the Steiner tree
built on a set of query nodes to find a community with
low time complexity.

(iii) We experimentally evaluate the effectiveness of two
proposed algorithms by using real datasets. Experi-
mental results show that two proposed algorithms are
more effective than an adaptation of an existing algo-
rithm.

The rest of the paper is organized as follows. In Section 2,
we survey previous works relevant to the FCS problem. The
formal definition of the FCS problem and its NP-Hardness are
presented in Section 3. The details of two proposed algorithms
for the FCS problem are explained in Section 4. In Section 5,
we experimentally evaluate the effectiveness of the proposed
algorithms. Finally, we conclude the paper in Section 6.

2. RELATED WORK

Our paper is inspired by existing works on detecting
communities and those on finding a dense subgraph. In this
section, we survey both lines of works as follows.
Community detection. The problem of detecting a community
in a large graph is important in various disciplines, such
as sociology, biology and computer science [4]. Girvan
and Newman [1] introduced the modularity measure to
find a community. There are many papers working on the
modularity measure and developing algorithms based on the
modularity [5–7]. Moreover, Martelot and Hankin [8] proposed
a algorithm to detect community on large-scale networks.
So far, the aforementioned works can be classified as the
community detection on unsigned graphs in that the weight
of each edge cannot be negative. There are another type of
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works on signed networks where each edge can have either
a positive weight or a negative weight [9–11]. Basically, most
of the existing works on community detection do not consider
any query nodes, which differentiate our problem from the
community detection problem. In addition, we use the edge-
density measure to find an appropriate community instead of
other measure such as the modularity.
Community search. Recently, Sozio and Gionis [2] proposed
the community search problem, which is a query-dependent
variant of the community detection problem. Given a graph,
a set of query nodes, the problem aims to find a densely
connected subgraph, which contains the set of query nodes.
The minimum degree of nodes in the subgraph is used to
measure the density of the subgraph. There are two main
differences of the FCS problem from the community search
problem. First, we use the edge density to measure the density
of the subgraph since the minimum degree of nodes may not
capture the exact density of a subgraph. Secondly, we consider
not only the density of the subgraph but also bad relationships
in the subgraph.
Pairwise constrained clustering. The pairwise constrained
clustering problem is one of the variants of the community
detection problem, where objects and pairwise relationships for
each object are given. The pairwise relationships are classified
into as two types, namely must-link and cannot-link. If two
objects are in the must-link, they should be in the same
community. However, if two objects are in the cannot-link,
they should be split into different communities. The pairwise
constrained clustering problem is finding communities which
satisfy all pairwise constraints yet minimize the objective
function. The first work of the pairwise constrained clustering
problem is proposed by Wagstaff and Cardie [12], and there
are several enhanced works later [13–15]. The FCS problem
is different from the pairwise constrained clustering problem
in two folds. First, the FCS problem is the community
detection problem based on the graph characteristics such as
the density, but the pairwise constrained clustering problem is
not. Secondly, the bad relationship between members in the
community is different from the cannot-link between objects,
since the resulting community of the FCS problem can include
members who are in bad relationships.
Team formation. Lappas et al. [16] studied another type of
problems of detecting a community in social networks, called
team formation. Given a social network graph where each
individual node in the graph is associated with a set of skills,
and a given task that requires a set of skills, the problem aims
at finding a subgraph that covers the given set of skills, that
is, a team to perform the task. There are many works and
algorithms on the team formation problem [17–20]. In the team
formation problem, the communication cost is used to measure
the effectiveness of a solution. However, a bad relationship
between two nodes cannot be represented as a communication
cost between two nodes, since the communication cost is
usually based on the shortest distance between two nodes.

For example, when the bad relationship between two nodes
A and B is represented as an edge with a large weight, the
communication cost between A and B can be determined
by the shortest distance that is smaller than the edge weight
between A and B.
Densest subgraph. There are several works [21, 22] that find
a densest subgraph in a given graph. Let G = (V, E)

be an undirected graph. The goal of the densest-subgraph
problem is to find a set S ⊆ V that maximizes the average
degree of nodes in S. The densest-subgraph problem can
be solved optimally in linear time by using the parametric
maximum flow algorithm [21]. Charikar [22] introduced a
2-approximation greedy algorithm for finding a dense subgraph
in a given graph. However, the average degree of nodes can
lead to an inappropriate resulting subgraph, called the free-
rider effect [2]. In the FCS problem, we use the edge density
to find a densely connected subgraph.
Quasi-clique. Another approach finding a dense subgraph is
based on the quasi-clique. Let G = (V, E) be an undirected
graph. Then a set of nodes is called a γ -quasi-clique or a
γ -clique for γ ∈ [0, 1], if the edge density of the induced
subgraph by the set of nodes is greater than or equal to γ .
Uno [23] proposed a polynomial delay algorithm for finding all
γ -quasi-cliques in a graph for given γ . Recently, Tsourakakis
et al. [24] introduced a general framework for finding an
optimal quasi-clique based on the concept of the edge surplus.
To solve the problem, two algorithms are proposed: a greedy
algorithm with an additive approximation and a heuristic
algorithm based on the local-search paradigm. Moreover, the
Constrained-OQC problem [24], which asks an optimal quasi-
clique containing query nodes, is introduced and proved to
be NP-hard. The main difference of our problem from the
Constrained-OQC problem is that our resulting community
should be connected, which is not always the case in the
Constrained-OQC problem.

3. FCS PROBLEM

In this section, we formally define the FCS problem in
Section 3.1, and prove the NP-hardness of the FCS problem
using the Steiner tree problem in Section 3.2

3.1. Problem definition

In this section, we introduce our notation, and formally define
the FCS problem.

Let us assume that we have an unweighted undirected social
network G = (V, E), where V is the set of nodes (users), and
E is the set of edges (relationships). We denote by n the number
of nodes and by m the number of edges. The edge between two
nodes u, v ∈ V implies that u and v are connected in the social
network. For a set of nodes S ⊆ V , let G[S] = (S, E[S]) be
the subgraph induced by S, E[S] be the set of edges both of
whose end nodes are in S.
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For each node in the graph, we define the bad relationships
of nodes by using a set of nodes, called the hate set H , which
is formally defined as follows.

Definition 3.1 (Hate set). Let G = (V, E) be the
unweighted undirected graph. For any node v ∈ V, a hate
set, denoted by Hv, is a set of nodes that are hated by v such
that ∀u ∈ Hv, ∃(u, v) ∈ E.

We also use H = {Hv|v ∈ V ∧ Hv 	= ∅} to denote the
collection of all the hate sets of the nodes. Based on H, we
define the following hate function f that measures the number
of nodes that are involved in any bad relationships.

Definition 3.2 (Hate function). Let G = (V, E) be the
unweighted undirected graph, S ⊆ V be a subset of the nodes
and Hv be the hate set of the node v ∈ V . Then the hate
function f (S) that assigns an integer value to S ∈ 2V , i.e.
f : 2V → Z, is defined as follows:

f (S) = |{v | v ∈ S ∧ ∃u ∈ (Hv ∩ S)}|.

We are setting the intuitive hate function as the number
of nodes involved in bad relationships. There can be other
candidate measures used to define the hate function, such
as the number of bad relationships of a community, and the
relative quantity of the number of members in bad relationships
in a community. In case of the number of bad relationships
involved in the community, we cannot distinguish different
cases, thus cannot select a better community. For example,
suppose two cases: (1) a member hates all member in the
community and (2) all members hate a member in the
community. Even though these two cases should be differently
measured, the numbers of bad relationships are the same in
both cases. Also, when we use the relative quantity of the
number of members in bad relationships, there can be too
many tied solutions which minimize the objective function. In
addition, from our experiment, our algorithms are shown to be
effective for our measure as well as this measure.

Based on the hate function f , a subgraph, the node set of
which has a smaller f value, is regarded as a more friendly
community in the sense that, in such a community, there will
be only a small number of members who hate or dislike other
members in the community.

As mentioned earlier, we need to choose an appropriate
measure that captures the density of a graph. The average
degree has the free-rider effect that nodes irrelevant to query
nodes can also be attached to the graph since they may increase
the total average degree [2]. This is illustrated in Fig. 1a. In
this example, the set of query nodes Q = {a, d, c} and graph
G are given. We know the community S1 = {a, b, c, d, e}
as the intuitive solution which includes Q. However, the
community that maximizes the average degree is S2 =
{a, b, c, d, e, f, g, h, i, j, k}. Intuitively, the nodes f, g, h, i

(a)

(b) (c)

FIGURE 1. Different definitions of the density. (a) Graph G,
(b) subgraph induced by S3 and (c) subgraph induced by S4.

and k are irrelevant to the set of query nodes Q. Moreover,
the minimum degree cannot exactly capture the density of the
graph. To illustrate, the set of query nodes Q = {a, d, c}, and
two subgraphs G[S3] and G[S4] are shown in Fig. 1b and c,
respectively. Intuitively, we can note that G[S3] is denser than
G[S4]. However, the minimum degrees of S3 and S4 are the
same, which is 1 at node c. Therefore, we decide to use the
ratio of the number of edges to the number of all possible pairs
of nodes, which is called the edge density |E[S3]|/(|S3|

2

)
, to

measure the density of a subgraph G[S3]. Also, as mentioned in
Section 2, a subgraph whose edge density exceeds γ is referred
to as a γ -clique.

Now, we present the formal definition of the FCS problem
as follows.

Definition 3.3 (FCS problem). Given an unweighted
undirected graph G = (V, E), a set of query nodes Q ⊆ V, a
collection of all hate sets H, the hate function f and a density
threshold γ ∈ [0, 1], find a set of nodes S ⊆ V which satisfies
the following conditions:

(1) S contains Q(Q ⊆ S),

(2) G[S] is a connected γ -clique and
(3) f (S) is minimized.

We also refer to any subset S′ ⊆ V satisfying only (1) and
(2) conditions as a feasible solution for the FCS problem.

3.2. Proof of NP-hardness

The FCS problem is an optimization problem where the
objective is to find a subgraph that minimizes the f value. In
this section, we prove that our FCS problem is NP-hard.
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We first consider the decision version of the FCS problem as
the following definition.

Definition 3.4 (Decision version of the FCS problem).
Given an unweighted undirected graph G = (V, E), a set of
query nodes Q ⊆ V, a collection of all hate sets H, the hate
function f, an integer h and a density threshold γ ∈ [0, 1], is
there a set of nodes S ⊆ V which satisfies conditions:

(1) Q ⊆ S,

(2) G[S] is a connected γ -clique and
(3) f (S) ≤ h.

It is easy to note that the only difference from Problem 3.3
is condition (3).

Lemma 3.1. The decision version of the FCS problem is
in NP.

Proof. When a set of nodes S ⊆ V is given, we can obviously
verify in a polynomial time whether f (S) is less than or equal
to h and G[S] is a connected γ -clique. Therefore, the decision
version of the FCS problem is in NP.

Now, we prove that the decision version of the FCS problem
is NP-complete by reducing the decision version of the Steiner
tree problem. The Steiner tree problem is a well-known NP-
hard problem as proved by Karp [25], and its decision version
is defined as follows.

Definition 3.5 (Decision version of the Steiner tree problem).
Given an unweighted undirected graph G = (V, E), a set of
query nodes Q ⊆ V and an integer parameter k, is there a
subtree of G containing all nodes in Q and having at most k
edges.

In the following lemma, we prove that the decision version
of the FCS problem is reducible to the decision version of the
Steiner tree problem.

Lemma 3.2. The decision version of the Steiner tree problem
is polynomial-time reducible to the decision version of the FCS
problem.

Proof. The steps for transforming the decision version of
the Steiner tree problem defined in Problem 3.5 to the
corresponding FCS problem are as follows:

(1) set G = (V, E) as the input graph of the FCS problem,
(2) set Q as the query nodes of the FCS problem,
(3) for any node v ∈ V , set Hv = {u|(u, v) ∈ E},
(4) set h = k + 1 and
(5) set γ = 0.

We show that there is a solution for the Steiner tree problem
if and only if there is a solution for the corresponding FCS
problem.

Let us consider the Steiner tree problem with G, Q, k, and let
T be the set of nodes in the solution Steiner tree. Then, in the
FCS problem, G[T ] is a connected 0-clique and f (T ) ≤ k+1.
Since, for any edges (u, v) ∈ E[T ], u and v are in a bad
relationship.

Conversely, the solution for the transformed FCS problem is
that for the Steiner tree problem. For the solution of the FCS
problem, that is, a set S of nodes, the minimum spanning tree
of G[S] is a Steiner tree built on Q with at most k edges, since
|S| ≤ h.

Theorem 3.1. The FCS problem is NP-hard.

Proof. By Lemmas 3.1 and 3.2, the decision problem of the
FCS problem is proved to be NP-complete. If an optimization
problem has an NP-complete decision version, then the
optimization problem is NP-hard [26]. Therefore, the FCS
problem is NP-hard

4. ALGORITHMS FOR THE FCS PROBLEM

Since the FCS problem is NP-hard, it is expensive to find
a optimal solution. Therefore, in this section, we devise two
algorithms that return solutions which are close to the optimal
one in a reasonable running time.

4.1. Greedy algorithm

In this section, we propose the Greedy algorithm for the FCS
problem. The Greedy algorithm is an adaptation of the greedy
algorithm finding a densest subgraph, which is proposed by
Charikar [22].

Algorithm 1: Greedy

Input: G := (V, E), H := a collection of hate sets, Q := a given
set of query nodes, γ := a given density threshold

Output: S := a set of nodes S ⊆ V
1 S0 ← GreedyQuasi(G, Q, γ )

2 S← GreedyRemove(S0,H, Q, γ )

3 return S

As shown in Algorithm 1, Greedy consists of two steps,
namely GreedyQuasi and GreedyRemove. In the first step,
regardless of the f value, GreedyQuasi focuses on finding a
set of nodes S0 ∈ V which satisfies the conditions (1) Q ⊆ S0,
and (2) G[S0] is a connected γ -clique. In the second step,
GreedyRemove removes nodes from S0 to minimize f (S0).
In such a way, the final set of nodes S ⊆ S0 is reported.

The pseudocode of the first step algorithm is given in
Algorithm 2. Let D denote a set of nodes that cannot be
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Algorithm 2: GreedyQuasi

Input: G := (V, E), Q := a given set of query nodes, γ := a
given density threshold

Output: S0 := a set of nodes S0 ⊆ V
1 S0 ← V , D← ∅
2 while G[S0] is not a γ -clique and (S0 \ D) 	= ∅ do
3 v← the node u in (S0 \ D) with the smallest degree in G[S0]
4 if v /∈ Q and G[S0 \ {v}] is connected then
5 S0 ← S0 \ {v}
6 else
7 D← D ∪ {v}
8 return S0

Algorithm 3: GreedyRemove

Input: S0, H := a collection of hate sets, Q := a given set of
query nodes, γ := a given density threshold

Output: S := a set of nodes S ⊆ V
1 S← S0
2 Repeat
3 R← ∅
4 for each v ∈ S do
5 if v 	∈ Q and f (S \ R) ≥ f (S \ {v}) and G[S \ {v}] is a

connected γ -clique then
6 R← {v}
7 if Hv ∩ Q = ∅ and f (S \ R) ≥ f (S \ Hv) and

G[S \ Hv] is a connected γ -clique then
8 R← Hv

9 S← S \ R
10 Until R 	= ∅
11 return S

removed. GreedyQuasi finds a node v ∈ (S0 \ D) with
the smallest degree in G[S0] (Line 3). If v is not in Q and
G[S0 \ {v}] is connected, then v is removed from S0 (Lines
4 and 5). Otherwise, v is added to D (Lines 6 and 7).
GreedyQuasi is terminated if G[S0] is a γ -quasi-clique or
(S0 \ D) = ∅. GreedyQuasi returns the set of nodes S0 ⊆ V
such that G[S0] is a connected γ -clique, Q ⊆ S0 for a given γ .

In the second step, the goal of GreedyRemove is
minimizing the f value. The pseudocode of GreedyRemove
is shown in Algorithm 3. S is initially set to be the returned
set of nodes from GreedyQuasi (Line 1). GreedyRemove
first finds the set R of nodes such that f (S \ R) is minimized,
G[S \ R] is a connected γ -clique (Lines 4–8). For v ∈ S, R is
set to either {v} or Hv to decrease the f value. GreedyRemove
iteratively removes R from S at each iteration (Line 9). It is
repeated until no nodes can be removed.

The running time of Greedy is the summation of the
running times of GreedyQuasi and GreedyRemove. The
execution time required for GreedyQuasi is O(n(n+m)+m).
This is because we can find the node with minimum degree by

using a list of nodes that is indexed by degrees in a constant
time, we can check connections between the query nodes in
O(n + m), and the total amount of updates in the list of nodes
due to the removed node is O(m). The time complexity for
GreedyRemove is O(n(n + m)), since we need to check the
connections for each iteration. Therefore, the time complexity
of Greedy is O(n(n + m)+ m).

The step in the Greedy algorithm with the highest cost is the
process of checking connections between query nodes in Q.
To reduce this cost, we use the Steiner tree built on the query
nodes. If a node is not in the Steiner tree, the node does not
affect the connections between query nodes in Q. Therefore,
if a node is not in the Steiner tree, Greedy does not need to
check the connections. This technique can reduce the cost of
the connection test.

The problem of finding an quasi-clique in a given graph that
contains query nodes, is NP-hard as mentioned in Section 2.
Thus, the Greedy algorithm guarantees finding a feasible
solution for the given density threshold γ value as the
following theorem.

Theorem 4.1. Let S∗ be the set of nodes of a connected
γ -clique which contains query nodes Q. Let us consider
a specific iteration I of GreedyQuasi where the node
v ∈ S∗ is removed by GreedyQuasi. Let SI be the set of
nodes in that iteration I . The Greedy algorithm guarantees
that it is possible to find a feasible solution when γ ≤
(|E[SI ]| − (|SI | − |S∗|))/

(|S∗|
2

)
.

Proof. See Appendix.

The Greedy algorithm guarantees to find a feasible solution
for the specific γ range. The main disadvantage of Greedy is
due to the fact that it removes nodes from the entire graph. This
can lead to a high time complexity.

4.2. SteinerSwap algorithm

The Greedy algorithm removes nodes from the entire graph
and thus it has a high time complexity. In order to reduce
the time complexity, we present another heuristic algorithm,
called SteinerSwap. Before we explain the SteinerSwap
algorithm, we introduce a straightforward solution adapted
from the existing algorithm for the quasi-clique problem.

A simple adaptation of the LocalSearchOQC [24] algorithm,
called Baseline, can be a solution of the FCS problem. Since
query nodes should be connected in the subgraph induced by
the resulting node set, Baseline uses the Steiner tree built
on a given set of query nodes as an initial seed set S0. Then,
Baseline keeps adding nodes to S0 while the edge density of
G[S0] is improved. When no nodes can be added, Baseline
removes nodes from S0 which increases the edge density of
G[S0]. When no nodes can be removed, Baseline restarts
from the adding step. Baseline is terminated when G[S0] is
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Algorithm 4: SteinerSwap

Input: G := (V, E), H := a collection of hate sets, Q := a given
set of query nodes, γ := a given density threshold

Output: S := a set of nodes S ⊆ V
1 T ← SteinerTree(G, Q) //Compute Steiner tree
2 S0 ← SteinerQuasi(G, T, Q, γ ) //Find quasi-clique
3 S← HateSwap(G, S0,H, Q, γ ) //Swap or Remove nodes
4 return S

Algorithm 5: SteinerTree

Input: G := (V, E), Q := a given set of query nodes
Output: T := a set of nodes T ⊆ V

1 T ← v, where v is a random node from Q
2 while (Q \ T ) 	= ∅ do
3 Find u ∈ (V \ T ) with the minimum distance to T
4 if Path(u, T ) 	= ∅ then
5 T ← T ∪ {Path(u, T )}
6 return T ;

a γ -clique for given γ . However, Baseline can be ineffective
because it adds or removes nodes from the seed set, regardless
of the f value. Moreover, the effectiveness of Baseline partly
depends on the seed set (i.e. the Steiner tree built on query
nodes). As either the size of the Steiner tree or the diameter
of the Steiner tree increases, the number of edges needed to
improve the edge density also increases. This leads to the
increase of the number of nodes to be added. Therefore, the
larger number of nodes to be added, the higher probability of
increasing the f value.

To overcome the limitations of the straightforward solu-
tion, we devise a new algorithm based on the Baseline algo-
rithm, namely SteinerSwap, which is shown in Algorithm 4.
SteinerSwap proceeds in three steps: SteinerTree, Stein-
erQuasi and HateSwap. In the first step, SteinerTree com-
putes a Steiner tree built on query nodes. In the second step,
SteinerQuasi finds a set of nodes whose induced subgraph
is a connected quasi-clique based on the Steiner tree. Finally,
HateSwap swaps (or removes) nodes in the returned set of
nodes from SteinerQuasi according to their types.

Let us now explain the detail of the SteinerSwap algorithm.
In the first step, we use a 2-approximation algorithm, which is
proposed by Kou et al. [27], to get nodes of the Steiner tree,
called SteinerTree. As shown in Algorithm 5, SteinerTree
incrementally adds nodes to T . First, SteinerTree finds a
node u ∈ V which has the minimum distance to T (Line 3).
If u exists, all the nodes in the shortest path from u to T are
added to T (Lines 4 and 5). This process is terminated if all the
nodes in Q are in T . Finally, SteinerTree reports T as a set
of nodes of the Steiner tree built on query nodes Q.

In the second step, SteinerQuasi finds a set of nodes of
a γ -clique as follows. Let S0 be the nodes of the Steiner
tree reported by SteinerTree. As shown in Algorithm 6,

Algorithm 6: SteinerQuasi

Input: G := (V, E), T := a set of nodes, Q := a given set of
query nodes, γ := a given density threshold

Output: S0 := a set of nodes S0 ⊆ V
1 i teration← 0, S0 ← T
2 while i teration < Imax do
3 while ∃v ∈ V \ S0 such that |E[S0]|

(
|S0|

2 )
≤ |E[S0∪{v}]|

(
|S0|+1

2 )
do

4 S0 ← S0 ∪ {v}
5 while ∃v ∈ V \ S0 such that |E[S0]|

(
|S0|

2 )
≤ |E[S0\{v}]|

(
|S0|−1

2 )
and

G[S0 \ {v}] is connected do
6 S0 ← S0 \ {v}
7 i teration← i teration + 1
8 if G[S0] is γ -quasi-clique then
9 break

10 return S0

Algorithm 7: HateSwap

Input: G := (V, E), S0 := a set of nodes,H := a collection of
hate sets, Q := a given set of query nodes, γ := a given
density threshold

Output: S := a set of nodes S ⊆ V
1 i teration← 0, S← S0
2 while i teration < Imax do
3 Si = a set of type-i nodes in S
4 while ∃u, v such that u ∈ S2, v ∈ V \ S, G[(S \ {u}) ∪ {v}]

is connected γ -clique, and f ((S \ {u}) ∪ {v}) is minimum do
5 S← (S \ {u}) ∪ {v} //swap type-2

6 while ∃u, v such that u ∈ S3, v ∈ V \ S, G[(S \ {u}) ∪ {v}]
is γ -clique, and f ((S \ {u}) ∪ {v}) is minimum do

7 S← (S \ {u}) ∪ {v} //swap type-3

8 S← Greedy Remove(S, H, Q, γ ) //remove type-4
9 while ∃v such that v ∈ V \ S, G[S ∪ {v}] is γ -clique, and

Hv ∩ S = ∅ do
10 S← S ∪ {v}
11 i teration← i teration + 1

12 return S

SteinerQuasi keeps adding nodes to the current set S0 while
the edge density of G[S0] increases (Lines 3 and 4). When
no nodes can be added, SteinerQuasi keeps removing nodes
which increase the edge density of G[S0] (Lines 5 and 6). This
process continues until the number of iteration exceeds the
maximum number of iteration Imax (i.e. 50).

In HateSwap, let S0 be the nodes of the connected γ -clique
reported by SteinerQuasi, HateSwap classifies the nodes in
S (Line 3) as shown in Algorithm 7. There are five types of
nodes, which are defined as follows: (1) If u ∈ S is a query
node, then u is type-1. (2) If G[S \ {u}] is not connected and
Hu ∩ S 	= ∅, then u is type-2. (3) If G[S \ {u}] is not a γ -quasi-
clique and Hu ∩ S 	= ∅, then u is type-3. (4) If Hu ∩ S 	= ∅,
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(a) (b) (c) (d)

FIGURE 2. Running example of SteinerSwap.

then u is type-4. (5) Otherwise, u is type-5. The type-1 node
cannot be removed since it is a query node. The type-2 and
type-3 nodes can be swapped with appropriate other nodes to
minimize the f value. In case of type-4 node, it can safely be
removed in order to minimize the f value. The type-5 node
does not need to be removed since it does not affect the f
value. Type-2 and type-3 nodes are swapped with appropriate
nodes in V \ S which minimized the f values (Lines 4–
7). Type-4 nodes are removed by GreedyRemove (Line 8).
Finally, add the v ∈ V to S if Hv ∩ S = ∅ and G[S ∪ {v}] is a
γ -clique (Lines 9 and 10). HateSwap is terminated when there
does not exist any node which can be swapped or the number
of iterations exceeds Imax. HateSwap returns the set of nodes
S ⊆ V which is a nearly optimal solution for the FCS problem.

The time complexity of SteinerTree is O(|Q| × m). The
time complexity of the connection test between query nodes
in the G[S] is O(|S| + |E[S]|). Thus, the time complexities
of SteinerQuasi and HateSwap are O(n × Imax × (|S| +
|E[S]|)). Therefore, the time complexity of SteinerSwap is
O(|Q| ×m+ n× Imax× (|S| + |E[S]|)) which is significantly
lower than those of Greedy, since |S| � n.

Let us explain using an example with Fig. 2. Figure 2a shows
the input graph G with Q = {a, g, c}, γ = 0.6, Hh = {a},
Hg = {h}, Hb = {c} and H = {Hh, Hg, Hb}. SteinerTree
outputs T = {a, b, c, g}, the set of nodes of the Steiner tree
built on Q, as shown in Fig. 2b. Based on T , SteinerQuasi
can find S0 = {a, b, c, f, g, h} such that G[S0] is a connected
0.6-clique with f (S0) = 3 as shown in Fig. 2c. HateSwap
classifies each node u ∈ S0 into five types (type-1: {a, g, c},
type-2: {b}, type-3: {h}, type-5: { f }). h can be swapped with
e, and b can be swapped with d. Finally, SteinerSwap reports
the set S = {a, c, d, e, f, g} with f (S) = 0 as the final answer.

5. EXPERIMENT

In this section, we evaluate the performance of the proposed
algorithms, namely Greedy and SteinerSwap, compared
with the straightforward adaptation of the existing algorithm,
namely Baseline. First, we introduce our experimental

setting in Section 5.1. Then, we examine the performance of
algorithms by varying parameters in Sections 5.2 and 5.3.

5.1. Environment setting

To show the effectiveness of the proposed algorithms, we use
three real datasets, namely Google+ (ego-Gplus), Epinions4

(soc-Epinions) and Twitter (ego-Twitter), downloaded from
SNAP.5 Google+ and Twitter are famous social network
services, and Epinions is a general consumer review site.
These are well suited for our problem, since our motivating
applications deal with user objects. Since bad relationships
in large social networks are unknown in public, we use real
datasets with synthetically generated bad relationships. We
convert the directed graphs into undirected graphs by deleting
the direction.

For each dataset, we generate bad relationships of each node
in the real datasets under the uniform distribution. This is
because information of bad relationships of a person in the real
world cannot be obtained in public because of privacy issues.
Moreover, the number of bad relationships of each node in
the real dataset tends to be proportional to its degree, since
we can consider that the number of bad relationships of a
person in the real world would be proportional to the number
of his/her acquaintances when there is no information. For
example, consider a node u the degree of which is 100. 100×α

nodes, which are connected by a directed edge to u, are selected
randomly. The bad relationships of u are generated based on
the 100 × α nodes. α is the bad relationships constant. In this
paper, we set α as 0.15. The details of real datasets are listed in
Table 1.

For each experiment, we vary the density threshold (γ ),
the size of query nodes (|Q|) and the distance between query
nodes (l). The default values of parameters are described in
Table 2.

4http://www.epinions.com/.
5http://snap.stanford.edu/.
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To evaluate the effectiveness of algorithms, we use f (S)

values, where S is the output set of nodes. Furthermore, we
also use f (S)/|S| values to figure out the relative amount of the
nodes in bad relationships in the community. A basic intuition
behind the second metric is that a large-sized community
should be regarded as a more friendly community than a small-
sized community when f values of their node sets are the same.
In addition, we check whether our proposed algorithms can be
executed in reasonable running times.

We implement all algorithms in C++. The experiments are
conducted on a PC equipped with Intel Core processor i7 CPU
with 3.4 GHz and 16 GB main memory.

TABLE 1. Dataset summary.

Nodes Edges Diameter

ego-Gplus 107 614 13 673 453 6
soc-Epinions 75 879 508 837 14
ego-Twitter 81 306 1 768 149 7

TABLE 2. Default parameters.

Parameters Default

γ 0.5
|Q| 3
l 2

5.2. Effectiveness of the algorithms

In this section, we show a series of experimental results by
varying parameters to evaluated effectiveness of the proposed
algorithms. The sets of query nodes are randomly selected.
Each value in all the graphs is an average value over 50
repetitions. For all the cases, all algorithms find feasible
solutions for the FCS problem.

5.2.1. Effects of the density threshold
Figure 3 shows the experimental results for varying the density
threshold (γ ). In all the cases, the proposed algorithms,
SteinerSwap and Greedy, outperform Baseline in real
datasets. f (S) of SteinerSwap is on the average 16 times
smaller than that of Baseline at γ = 0.6. In terms of f (S)/|S|,
with small γ = 0.4, f (S)/|S| of SteinerSwap is 9.5 times
smaller than that of Greedy and 18.3 times smaller than that
of Baseline. With large γ = 0.6, f (S)/|S| of SteinerSwap
is 11.1 times smaller than that of Greedy and 38.7 times
smaller than that of Baseline. Thus, the difference between
f (S) values of SteinerSwap and Baseline increases, when
γ increases. The reason is that the number of nodes added
to the seed set also increases as γ increases as mentioned in
Section 4.2.

5.2.2. Effects of the number of query nodes
Figure 4 shows the experimental results for varying the
number of query nodes (|Q|). Among f (S) values of all
algorithms, that of SteinerSwap is the smallest. Especially,
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FIGURE 3. f (S) and f (S)/|S| values with varying γ . (a) ego-Gplus: f (S), (b) soc-Epinions: f (S), (c) ego-Twitter: f (S), (d) ego-Gplus:
f (S)/|S|, (e) soc-Epinions: f (S)/|S| and (f) ego-Twitter: f (S)/|S|.
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FIGURE 4. f (S) and f (S)/|S| values with varying |Q|. (a) ego-Gplus: f (S), (b) soc-Epinions: f (S), (c) ego-Twitter: f (S), (d) ego-Gplus:
f (S)/|S|, (e) soc-Epinions: f (S)/|S| and (f) ego-Twitter: f (S)/|S|.
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FIGURE 5. f (S) and f (S)/|S| values with varying l. (a) ego-Gplus: f (S), (b) soc-Epinions: f (S), (c) ego-Twitter: f (S), (d) ego-Gplus:
f (S)/|S|, (e) soc-Epinions: f (S)/|S| and (f) ego-Twitter: f (S)/|S|.

f (S) of SteinerSwap is up to 20.3 times smaller than that
of Baseline at |Q| = 3. The difference between f (S)/|S|
values of SteinerSwap and Baseline increases, when |Q|
increases. With |Q| = 3, f (S)/|S| of SteinerSwap is 14.9
times smaller than that of Greedy and 39.3 times smaller than
that of Baseline. These results show that the effectiveness of
Baseline gets worse when the size of the Steiner tree built

on the query nodes increases as mentioned in Section 4.2.
However, SteinerSwap effectively reduces the f value even
though the size of the Steiner tree increases.

5.2.3. Effects of the distance between query nodes
Figure 5 shows the experimental results for varying the
distance between query nodes (l). Similar to the above
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results, SteinerSwap outperforms Greedy and Baseline in
terms of f (S) and f (S)/|S|. f (S) of SteinerTree is up
to 30 times smaller than that of Baseline. In addition, the
difference between f (S)/|S| values of SteinerSwap and
Baseline increases, when l increases. These results show
that SteinerSwap effectively reduces the f value through
swapping nodes. As the distance increases, the size of Steiner
tree built on query nodes increase in order to connect query
nodes. This leads to the increase of the number of nodes added
as mentioned in Section 4.2.

5.3. Efficiency of the algorithms

In Section 3, we theoretically show the efficiency of the
proposed algorithms in terms of the time complexity. In this
section, we show the efficiency of the proposed algorithms, in

TABLE 3. Running times summary.

Running Running
Running time of time of time of
SteinerSwap (s) Greedy (s) Baseline (s)

ego-Gplus 12.18 407.07 11.67
soc-Epinions 0.42 28.983 0.367
ego-Twitter 1.16 47.9 0.98

terms of the running time. As mentioned earlier, each value
in all the graphs is an average value over 50 repetitions. The
average running times of each algorithm are summarized in
Table 3.

5.3.1. Effects of the density threshold
Figure 6 shows the experimental results about running times
for varying the density threshold (γ ). It is observed that the
running times of all algorithms do not depend on γ . This is
because the time complexity of all algorithms do not involve
the density threshold term as described in Section 4. As shown
in the figure, we can see that the running time of Greedy is
the worst as we expected in Section 4.1, which is much larger
than those of SteinerSwap and Baseline. The running time
of SteinerSwap is comparable with that of Baseline.

5.3.2. Effects of the number of query nodes
Figure 7 shows the experimental results for varying the number
of query nodes (|Q|). The running time of SteinerSwap
and Baseline increase when |Q| increases, since the time
complexity of finding a Steiner tree is O(|Q| × n). However,
the running time of Greedy does not depend on the number of
query nodes. This is because Greedy removes nodes from the
entire graph to find a quasi-clique. Thus, the gap between the
running time of SteinerSwap and that of Greedy increase
as |Q| decreases. Nevertheless, similar to the above results,
the running time of Greedy is the worst among algorithms
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FIGURE 6. Running time with varying γ . (a) ego-Gplus: running time, (b) soc-Epinions: running time and (c) ego-Twitter: running time.

1

10

100

(a) (b) (c)

2 3 4 5 6

ru
nn

in
g 

tim
e 

(i
n 

se
cs

.)

number of the qury nodes

SteinerSwap Greedy Baseline

100

  1K

 10K

2 3 4 5 6

ru
nn

in
g 

tim
e 

(i
n 

m
s.

)

number of qury nodes

SteinerSwap Greedy Baseline

100

  1K

 10K

2 3 4 5 6

ru
nn

in
g 

tim
e 

(i
n 

m
s.

)

number of qury nodes

SteinerSwap Greedy Baseline

FIGURE 7. Running time with varying |Q|. (a) ego-Gplus: running time, (b) soc-Epinions : running time and (c) ego-Twitter: running time.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 58 No. 6, 2015

 at K
orea A

dvanced institute of Science and T
echnology on January 5, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


1480 S.-Y. Kim et al.

1

10

100

  1K

 10K
(a) (b) (c)

1 2 3 4

ru
nn

in
g 

tim
e 

(i
n 

se
cs

)

distance between the query nodes

SteinerSwap Greedy Baseline

100

  1K

 10K

1 2 3 4

ru
nn

in
g 

tim
e 

(i
n 

m
s.

)

distance between query nodes

SteinerSwap Greedy Baseline

100

  1K

 10K

1 2 3 4

ru
nn

in
g 

tim
e 

(i
n 

m
s.

)

distance between query nodes

SteinerSwap Greedy Baseline

FIGURE 8. Running time with varying l. (a) ego-Gplus: running time, (b) soc-Epinions: running time and (c) ego-Twitter: running time.

as we expected. The running time of SteinerSwap is still
comparable with that of Baseline, and much smaller than that
of Greedy.

5.3.3. Effects of the distance between query nodes
Figure 8 shows the experimental results about running times
for varying the distance between query nodes (l). As shown
in the figure, the running time of SteinerSwap and that of
Baseline increase when l increases. This is because the cost of
finding paths between query nodes increases, when the distance
between query nodes increases. However, the running time
of SteinerSwap is much smaller than that of Greedy. In
addition, the running time of SteinerSwap is still comparable
with that of Baseline.

6. CONCLUSION

In this paper, we address the problem of finding a densely con-
nected community containing query nodes while minimizing
the number of members involved in bad relationships in the
community, namely FCS. The proposed problem is useful in
lots of real-world applications such as finding thematic groups
and organizing social events. We prove that the proposed prob-
lem is NP-hard by using the Steiner tree problem. To solve the
proposed problem, we devise two heuristic algorithms, namely
Greedy and SteinerSwap. Greedy removes nodes in a given
graph while SteinerSwap adds nodes to the Steiner tree built
on the query nodes. We demonstrate that the proposed algo-
rithms are effective in practice through extensive experiments
on real datasets. On the average over various experimental
parameters for all datasets, SteinerSwap performs 11.1 and
25.2 times better than Baseline, an adaptation of an existing
algorithm, in terms of f (S) and f (S)/|S| values, respectively.
In addition, we provide the time complexity of the Steiner-
Swap algorithms and that of the Greedy algorithm. We also
show that the SteinerSwap algorithm is comparable with the
Baseline algorithm, in terms of efficiency, through various
experiments.

For the future work, we would like to extend our work to
process large graphs more efficiently and to process graphs
with larger density thresholds. Moreover, we plan to add a
constraint on the size of an extracted community, since the size
of the community is an important issue in the real world.
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APPENDIX. PROOF OF THEOREM 4.1

Proof. Let S be a subset of nodes. Edge surplus hγ is defined
as hγ (S) = |E[S]|−γ

(|S|
2

)
. Let dS(u) denote the degree of the

node u ∈ S in G[S]. Note that hγ (S∗) ≥ 0 and S∗ ⊆ SI .

dSI (u) ≥ dS∗(u) ≥ 2,∀u ∈ (S∗ \ Q)
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